A Fringe Projector Based study of the Brighter-Fatter Effect

Woodrow Gilbertson with Andrei Nomerotski, Peter Takacs, Ivan Kotov, and Merlin Fisher-Levine

Recap

- Using an interferometer I projected fringes onto a CCD and demonstrated an asymmetry between peaks and troughs at higher intensities
- Problems with the lab setup caused lower contrast than expected as well as a drift changing the positions of the fringes by a few pixels
- The model for the Brighter-Fatter effect had trouble fitting the data

Improvements made to the lab setup

 Two dark tubes with flocking were added to the setup, along with a mask in front of the CCD

Improved Contrast 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 2000 4000 6000 8000 10000 12000 14000 Amplitude (ADU)

Additional data sets taken

 More data sets were taken at different periods to allow for investigations into how certain parameters correlate with the period

Modeling the Brighter-Fatter Effect

• The fringes can be modeled in one dimension using the following integral:

$$\rho(x') = \int_{-\infty}^{\infty} f lux \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-x')^2}{2\sigma^2}} dx$$

• To account for the Brighter-Fatter Effect the PSF (σ) must depend on the flux:

$$\sigma = \sigma_o(1 + \delta \times flux)$$

• Both σ_o and δ determine the PSF. The fitter had a difficult time deciding if it should change δ or σ_o when fitting fringes

Modeling the effect

$$\sigma = \sigma_o(1 + \delta * flux)$$

- σ_o and δ should each be a constant, so to measure the brighter fatter effect I need to find σ_o
- By taking the shortest exposures and fixing δ = 0 I was able to get an estimate for σ_o
- Fixing this value in longer exposures while allowing δ to vary allows me to properly measure the brighter fatter effect

Results

$$\sigma = \sigma_o (1 + \delta \times flux)$$

Finding σ_o when δ = 0

δ when σ_o is fixed

Results

• Plugging in the constant values for σ_o and δ into the equation gives a linear plot of the PSF (σ) changing with flux

$$\sigma = \sigma_o (1 + \delta \times flux)$$
5.0
4.8
4.6
4.4
4.2

 This shows a Brighter Fatter Effect of 7.76% +/- 2.8% which is consistent with previous experiments

Future work

- Correlation in the data need to be looked into (period vs delta, contrast vs sigma, etc.)
- Currently only one segment is being analyzed, this number can easily be increased with more time (gain has been measured and the corrections can be made)
- Edge roll-off appears to change the fringes as well, this could be another way to investigate that sensor effect